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The global digital transformation enables computational audiology for 
advanced clinical applications that can reduce the global burden of hear-
ing loss. In this article, we describe emerging hearing-related artificial 
intelligence applications and argue for their potential to improve access, 
precision, and efficiency of hearing health care services. Also, we raise 
awareness of risks that must be addressed to enable a safe digital 
transformation in audiology. We envision a future where computational 
audiology is implemented via interoperable systems using shared data 
and where health care providers adopt expanded roles within a network 
of distributed expertise. This effort should take place in a health care 
system where privacy, responsibility of each stakeholder, and patients’ 
safety and autonomy are all guarded by design.
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INTRODUCTION

The estimated number of individuals suffering from dis-
abling hearing loss has been growing ever since global reporting 
began (Vos et al. 2016; World Health Organization 2019), with 
WHO projections reaching 900 million by 2050 (World Health 
Organization 2019). Besides effects on interpersonal communi-
cation, psychosocial well-being, and quality of life, hearing loss 
has a substantial socioeconomic impact (Olusanya et al. 2014; 
World Health Organization 2017). Conservative estimates sug-
gest that the overall global annual cost of unaddressed hearing 
loss is 750 to 790 billion US dollars (World Health Organization 
2017). In children, hearing loss restricts language development, 
often resulting in a lasting effect on social and cultural engage-
ment and unfulfilled educational potential. In adults, hearing 
loss leads to higher unemployment, missed workdays, and social 
isolation (Kramer et al. 2006). Hearing loss is further associated 
with more rapid cognitive decline and increased occurrence of 
dementia-like symptoms (Livingston et al. 2017). Evidence is 
growing that timely intervention, including hearing aids, can 
reduce many of these consequences (Maharani et al. 2018).

The actual problem could be even greater, stressing the need 
for the computational approaches we introduce below. Mild 
hearing loss (20 to 34 dB HL), which is two to three times 
more prevalent than moderate or more severe loss (>35 dB HL), 
has recently been recognized as an adverse factor in daily life 
(according to the new GBD 2010 classification on grades of 
hearing loss; Wilson et al. 2017; Shield 2019). Hearing loss is 
arguably the most prevalent of all impairments in years lived 
with disability (Vos et al. 2016) if we include all known patholo-
gies that currently have no clinical consequences for rehabilita-
tion. Examples include slight or minimal hearing loss (15 to 20 
dB HL; Moore et al. 2020), extended high-frequency loss (8 to 
20 kHz; Motlagh Zadeh et al. 2019), and suprathreshold deficits 
related to understanding speech in noisy situations (Kollmeier 
& Kiessling 2018).

Existing audiological services cannot address the global bur-
den of hearing loss due to inherent barriers, including a dearth 
of trained professionals, equipment costs, and required exper-
tise (Swanepoel & Clark 2019). New approaches that transcend 
current models of practice are essential to overcome global 
access challenges. Computational augmentation, enhancing 
and complementing human capabilities by digital tools (Wilson 
& Daugherty 2018), is an essential strategy given the lack of 
enough qualified human experts in ear and hearing care world-
wide (World Health Organization 2013), the large number of 
people suffering from hearing loss that is currently underserved, 
and the growing complexity of high-quality diagnostics and 
therapeutics.

Computational approaches are enabled by significant global 
developments, including growing computational power, data 
storage, and artificial intelligence; a paradigm shift referred to 
as the fourth industrial revolution (Schwab 2016). An essential 
enabler for this digital transformation is the exponential growth 
in internet connectivity in almost every country, exempli-
fied by the broadband subscription penetration in Africa (cur-
rently 81%; Jonsson et al. 2019). Continued growth is expected 
worldwide as 4G and 5G mobile networks become increas-
ingly available. Another catalyst is the tech companies enter-
ing the medical market, applying expertise from algorithms and 
big data to health problems. There is also a trend towards the 
“quantified self,” which encourages the continuous use of per-
sonal tracking devices and stimulates the development of future 
generations of personal (in-ear) electronics that monitor stress, 
mental effort, and mental well-being (Crum 2019).

Other clinical disciplines have implemented computational 
approaches to parts of the clinical care pathway, but this has 
not yet resulted in a paradigm shift in health care (Rajkomar 
et al. 2019). To give a few examples, the field of ophthalmol-
ogy has adopted the use of automated diagnostic data collection 
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hardware (Bizios et  al. 2011). Radiology has begun adopting 
computational image segmentation for automated diagnoses 
(Hosny et  al. 2018). Genotype information is standardized to 
evaluate patient health and effective cancer treatment (Benson 
et al. 2012). Also, mobile phones are becoming standard tools 
in many disciplines, including diabetes management (Thabit 
& Hovorka 2016) and dermatologic diagnoses (Ashique et al. 
2015), among many other applications. These are examples of 
computational approaches for diagnosis, self-evaluation, and 
treatment. Unfortunately, all the different components identified 
have developed across different fields—there is no clear indica-
tion that all have been applied to a single field. Therefore, if 
clinical audiology adopts most of the principles defining com-
putational audiology, it can generally become a standard-bearer 
for modern clinical care delivery. In this perspective paper, we 
sketch out how computational approaches may further develop 
audiology and illustrate fundamental advances in diagnosis, 
therapy, and rehabilitation that could become essential elements 
in a comprehensive digital transformation of clinical audiology.

DEFINITION AND EXAMPLES OF 
COMPUTATIONAL AUDIOLOGY THAT MAY 

IMPROVE PRECISION

Audiology is an exceptionally strong candidate for computa-
tional augmentation and may benefit from the current and novel 
power of computational science because of its strong mechanistic 
theory, numerical nature, measurement-driven procedures, and 
the multitude of clinical decisions to be made. Here, we introduce 
the term computational audiology, which we define as:

The readily quantifiable nature of audiological procedures 
makes audiology well suited for modern machine learning and 
data collection techniques. Translational reasons to apply com-
putational techniques in audiology include (i) improved accu-
racy, increased speed, wider application of (diagnostic) tests and 
evaluation (applied to, e.g., audiometry; Schlittenlacher et  al. 
2018b); (ii) objective and consistent interventions, outcomes, 
and decisions across clinicians and clinics (applied to, e.g., CI 
fitting; Meeuws et al. 2017). Over time, algorithms can become 
more sophisticated and take over tasks now performed by humans 
or take on tasks that are currently not performed due to a lack 
of resources, time, or clinical consequences, including screen-
ing for milder forms of hearing impairment. Computational 
audiology can improve care by dealing with multifactorial 
data, including indices of psychosocial well-being, quality of 
life, comorbidity, and patient-centric, individual descriptors of 

complaints and symptoms. For example, Palacios et al. (2020) 
used an unsupervised learning approach to study heterogeneity 
of patients suffering from tinnitus by analyzing the complaints 
and symptoms described in an online patient forum. In addition 
to deterministic methods, it also facilitates the use of probabilis-
tic methods that include uncertainty and likelihood to cope with 
the wide variability across individuals with hearing loss.

The application of algorithms in audiology is not new. 
Historically, it has been restricted mainly to cohort-level infer-
ence, for example, in understanding the incidence and degree 
of hearing loss in the general population (Mościcki et  al. 
1985), and the prescription of sound-amplification for different 
types and degrees of hearing loss (Byrne & Burwood. 2001). 
Individual refinement based on learning systems could be a 
promising way forward but raises many challenges to perform 
in an evidence-based manner (Barbour 2018).

Diagnostics
In general, diagnostic procedures in audiology consist of a 

sequence of psychometric and physiologic tests. Clinicians may 
benefit from computational augmentation because they need 
to deal with uncertainty, time constraints for testing, and the 
individual features of the patient. Clinical experts will typically 
evaluate test results visually and from summary statistics (e.g., 
average HL), which requires skill and experience but also intro-
duces subjective variability in interpretation, restricts estimates 
on the certainty of the overall outcome, and impedes more 
advanced (multifactorial) analysis, which is difficult for humans 
(Kahneman 2011).

Limited time for testing is arguably the most significant con-
straint in collecting high-quality multidimensional data for an 
individual patient. However, machine learning allows, in prin-
ciple, for flexible, efficient estimation tools that do not require 
excessive testing time. In an approach known as active learn-
ing, new computational tools actively determine which stimuli 
would be most valuable to deliver in order to converge onto an 
accurate estimate rapidly. Active learning was recently applied 
to diagnostic tests including basic audiometry (Schlittenlacher 
et al. 2018b; Barbour et al. 2019a), determination of the edge 
frequency of a high-frequency dead region in the cochlea 
(Schlittenlacher et  al. 2018a), and hearing aid personalization 
(Nielsen et  al. 2014). Also, when multiple factors that share 
some relationship are available, an active learning method can 
learn and exploit the relationships in real-time. For instance, data 
from the National Institute for Occupational Safety and Health 
database (Masterson et al. 2013) has been deployed as Bayesian 
“prior beliefs” to assess the similarity between ears of 1 million 
participants. A bilateral audiogram procedure that uses these pri-
ors speeds up testing considerably (Barbour et al. 2019b).

Principles of computational audiology may be applied to 
current research and clinical issues. For example, machine 
learning approaches to image analyses of otoscopy of the ear-
drum demonstrate the potential to supplement audiological 
tests with a diagnosis of potential outer and middle ear pathol-
ogy (Myburgh et  al. 2018; Cha et  al. 2019). With a reported 
accuracy of between 81 and 94% and options for capturing and 
receiving diagnosis using mobile phone-based otoscopy, these 
approaches provide direct feedback to the clinician and there-
fore could allow point-of-care interventions and optimize cur-
rent care (Myburgh et al. 2018; Cha et al. 2019).

COMPUTATIONAL AUDIOLOGY

Computational audiology: the approach to diagnosis, treat-
ment, and rehabilitation in audiology that:

• uses algorithms and data-driven modeling techniques, 
including machine learning and data mining, to gener-
ate diagnostic and therapeutic inferences and to increase 
knowledge of the auditory system;

• leverages current biological, clinical and behavioral the-
ory and evidence;

• provides or augments actionable expertise for patients 
and care providers.
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Combining self-reported difficulty and genetic data may 
lead to potential candidate genes for hearing loss. Such a pro-
cedure, applied to the data from 250,000 people, identified 44 
new genetic loci potentially associated with hearing loss (Wells 
et  al. 2019). Individual, patient-centric (hearing) health care 
could become more comprehensive by collecting more exten-
sive hearing profiles combined with other patient characteris-
tics beyond the audiogram (Sanchez Lopez et  al. 2018). For 
example, the genetic profile (Hildebrand et  al. 2009) can be 
used to differentiate better various underlying causes leading to 
hearing loss (Dubno et al. 2013). A probabilistic interpretation 
of a patient profile can be further refined using auditory mod-
eling (Verhulst et al. 2018) and AI and, among other applica-
tions, form the basis for prognosis. It is paramount to know the 
underlying pathology to determine a specific target therapy or 
rehabilitation strategy. By combining these examples, audiol-
ogy may become a prime example of precision medicine.

Rehabilitation
When fitting cochlear implants or hearing aids, machine 

learning may help clinicians optimize parameters by minimiz-
ing a cost function. A recently developed clinical decision sup-
port system calculates a utility function based on a weighted 
combination of outcome measures (Meeuws et al. 2017). The 
utility function is continuously updated as the system learns 
from previous outcomes. The system also incorporates active 
learning by determining which of the collected outcomes are 
most clinically useful. Such a system can oversee the effect 
of considerably more fitting parameters than those commonly 
adjusted by audiologists. It can be used to make more accu-
rate predictions of the expected outcome, enable cost-benefit 
evaluation by reducing the time needed by a trained profes-
sional to perform tests, and facilitate a more standardized CI 
fitting (Meeuws et  al. 2017). In the future, the system might 
be extended to individualized cochlear implant surgery based 
on high-resolution medical images of the cochlea (Heutink 
et al. 2020). Also, users’ preferences can be collected to make 
data-driven, individual adjustments to their cochlear implant or 
hearing aid. The internet of things provides suitable interfaces 
for users to provide feedback under ecologically valid circum-
stances (e.g., ecological momentary assessments; Wu et  al. 
2015), but also provides tools that monitor behavior that could 
serve as a proxy to derive user preferences (Johansen et  al. 
2018).

Another example of computational approaches to improve 
rehabilitation is applying neural networks to enhance speech-
in-noise understanding in cochlear implant users (Goehring 
et al. 2019). Noisy speech signals were decomposed into time-
frequency units, extracting a set of psychophysically verified 
features, fed into a neural network to select frequency chan-
nels with a higher signal-to-noise ratio. This preprocessing of 
the input signal significantly increased speech understanding, 
even of unfamiliar speakers (i.e., not used to train the network). 
The developers limited the required computational power and 
memory for their model to make it implementable on mobile 
devices.

Hearing Research
Machine learning techniques could also lead to better mod-

els of human auditory behavior and a better understanding of 

the auditory system. Recently, Ausili (2019) used a neural net-
work to model experience-dependent sound localization for dif-
ferent hearing impairments. Deep neural networks are achieving 
parity with humans for some tasks, and it is possible that these 
networks could mimic aspects of representation and functional 
organization of the human brain (Güçlü & van Gerven 2017; 
Huang et al. 2018; Kell & McDermott 2019).

We can conclude that the trend of applying computational 
approaches in audiology could lead to more individualized 
hearing care and new services, as illustrated in Example 1. We 
base this claim on above-cited examples in diagnosis, rehabili-
tation, and hearing research, and on computational approaches 
in audiology already employed by digital hearing health tech-
nologies around the world (Swanepoel & Hall 2020). A part of 
these new services could be provided by companies that tradi-
tionally did not specifically target customers with hearing loss. 
For example, speech-to-text apps provide new functionality to 
people with hearing loss (Pragt et al. 2020), and AirPods Pro 
are nearing the functionality of hearing aids (Bailey 2020) but 
do not yet fulfill all FDA requirements and fall short in terms of 
amplification for the rehabilitation of people with moderate to 
severe hearing loss.

HOW COULD COMPUTATIONAL APPROACHES 
IMPROVE ACCESS TO HEARING HEALTH CARE?

Hearing health care is challenging to deliver in low- and 
middle-income countries (LMICs) because it currently requires 
specialized equipment and trained professionals. Smartphone-
mediated telehealth holds great promise to lower many of these 
barriers (Swanepoel & Clark 2019). Smartphone penetration 
now exceeds 80% in LMICs (Jonsson et al. 2019), and low-cost 
equipment and robust test procedures are becoming available to 
perform audiometric (Potgieter et al. 2018; Swanepoel & Clark 
2019) and otologic (Chan et al. 2019) diagnostic measures with 
acceptable levels of quality and reproducibility. We foresee a 

*Based on Crum (2019).

EXAMPLE 1: REHABILITATION SERVICE*

A person tests her hearing with an app to find out that her 
hearing profile is similar to that of 1.7 million other peo-
ple in a global database who reported good results using 
hearing aids. She buys two hearing aids and signs up for 
a service, an app that sends programming instructions 
and settings to the hearing aids and asks for feedback to 
ascertain audibility and judge sound quality. Indications 
of momentary and remaining hearing problems, includ-
ing expressions like “excuse me” or “what did you say?” 
are detected using automatic speech recognition. After a 
couple of weeks, the system provides fine-tuning based 
on her needs and similarity to other cases. It automatically 
determines that when entering her local subway station, 
substantial echo cancelation is needed. After a few years, 
the system detects specific changes in the spectral quality 
and patterns of sounds when she speaks. After tracking this 
trend for several months, the system suggests scheduling 
an appointment with a physician because these changes can 
correlate with heart disease.
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considerable growth in mobile app usage for self-administered 
hearing tests (Swanepoel et  al. 2019; Hazan et  al. 2020) and 
self-adjustment by hearing aid users (Søgaard Jensen et  al. 
2019) that in turn could lead to self-fitted hearing aids. In the 
simplest form of telehealth, the caregiver and patient are physi-
cally separated, and technology facilitates interaction. However, 
telehealth can be expanded by distributing expert knowledge 
across the health care delivery system, with clinical exper-
tise incorporated into algorithms employed on devices used 
by patients or by local caregivers, making hearing health care 
possible and affordable in remote and underserved areas where 
experts are lacking, as illustrated in Example 2.

If screening and diagnosis of hearing loss can be improved in 
LMICs, the next requirement is to provide specialized care and 
affordable hearing loss rehabilitation. Global awareness for hear-
ing loss has recently been spurred by the formation of a Lancet 
Commission examining strategies to reduce the burden of hear-
ing loss (Wilson et al. 2019). Recommendations include stimulat-
ing the development of low-cost hearing prostheses, leveraging 
smartphone technologies for use as hearing assistive devices, and 
equipping a small number of specialist centers for medical and 
surgical management of ear disease. Computational audiology 
as an emerging field is uniquely positioned to combine inexpen-
sive, ubiquitous hardware and software (e.g., smartphones with 
apps) and sophisticated multifactorial (meta)data modeling. By 
transforming cheap hardware and equipping it with (AI-based) 
software, LMICs can benefit from advanced automated diagnos-
tic tools and interventions to address hearing loss. The overall 
cost of devices and services incurred per user will drop, which 
is expected to compensate for the resources needed for building 
and maintaining the computational infrastructure, defined here 
as all hardware, software, protocols, practices, and regulation 

needed to apply computational approaches on an international 
scale (O’Brien 2020). An interesting (but solvable) question is 
how governments, companies, health care providers, and users 
will together bear the cost of computational infrastructure, 
research & development, intellectual property, licenses, devices 
(e.g., smartphones), and other indirect costs. How to align the 
involved stakeholders together with the potential risks, privacy 
issues, and technical requirements are the topics that we consider 
in the next sections.

ETHICAL CONSIDERATIONS AND 
TECHNICAL REQUIREMENTS CONCERNING 
COMPUTATIONAL APPROACHES IN HEARING 

HEALTH CARE

Whereas AI applications in audiology outlined previously 
should be considered an improvement, they may also involve 
some additional risks.

Unauthorized or Undesirable Use
For example, AI researchers recently introduced new lipread-

ing technology to facilitate speech understanding in people with 
a hearing impairment. They trained their algorithm on TV foot-
age, and it outperformed expert lip-readers. This solution could, 
in theory, allow people with hearing loss to augment their speech 
understanding (Shillingford et al. 2018). However, the technique 
could also be used for other purposes, including mass surveil-
lance (Metz 2018). Footage from closed-circuit TV could be 
fed into the algorithm to track conversations of unknowing citi-
zens, invading their privacy. A similar privacy issue may apply 
to devices that incorporate tracking technology. The Global 
Positioning System (GPS) can be used to track a smartphone 
on a rideshare journey, but it can also track smart hearing aids. 
Current hearing aids can log users’ preferences in particular 
environments, monitor adjustments users make in each place, 
log those preferences, use global positioning system to detect 
when they return to those places, and automatically or manu-
ally reactivate the preferred settings (Wolfgang 2019). In courts, 
tracking the whereabouts of personal devices has already led to 
erroneous criminal accusations (Valentino-DeVries 2019).

Bias in the Data Used to Train an AI-System
Buolamwini (2017), for example, uncovered large gender 

and racial biases in face recognition systems sold by tech giants 
IBM and Microsoft. Errors in gender identification were sub-
stantially lower for lighter-skinned men (1% error rate) than 
darker-skinned women (35% error rate). One explanation was 
that the face recognition systems were trained on data sets con-
taining many more men with light skin than women with dark 
skin. This example shows that real-world biases may translate 
to inherent biases in the outcome of AI systems, whether we are 
aware of those biases or not. As a result, it might be a risk to 
apply data collected in, for example, Western countries to solu-
tions for non-Western regions with other ethnic characteristics, 
including race and lifestyle.

Violation of Privacy
Privacy protection has begun to be taken seriously in recent 

years, resulting in the EU’s General Data Protection Regulation 
(GDPR; Regulation (EU) 2016/679, 2016). In addition to 

†Based on Barbour et al. (2019a), Chan et al. (2019), Swanepoel and Clark 
(2019).

EXAMPLE 2: HEARING SCREENING IN EARLY 
CHILDHOOD†

Children in LMICs typically do not have access to hear-
ing screening. However, a community-based project relying 
on AI assistance offers screening, diagnosis, and referral in 
underserved communities.

 (1) Screening is conducted via an automated pure-tone-
screening test facilitated on a smartphone for chil-
dren from 3 to 4 years.

 (2) Test quality is monitored locally on the smartphone 
and regionally via uploaded data on a cloud-based 
data management portal.

 (3) If a child fails the screening test, an automated 
report is generated from the cloud-based data man-
agement portal and sent to caregivers by text mes-
sage or email.

 (4) If the child fails the screening a second time, auto-
mated threshold pure-tone audiometry facilitated by 
an operator and AI-supported middle ear function 
assessment is carried out. A clinical decision sup-
port system assists local caregivers in diagnosing 
hearing loss and referring to specialized care.
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general privacy issues, one article of the GDPR explicitly states 
that individuals should not be subjected to a decision based on 
automatic processing, including profiling, except when explicit 
consent is given (Goodman & Flaxman 2017). Manufacturers 
of hearing devices and cochlear implants are already collecting 
large bodies of data (data profiles) beyond the view of (inde-
pendent) publicly funded hearing health care providers and 
researchers. Clinicians use that data for counseling purposes, 
for instance, to evaluate hearing aid usage based on data-logging 
(Saunders et al. 2020). However, Mellor et al. (2018) reported 
that a hearing aid manufacturer did share a large dataset but 
did not share possibly relevant commercially sensitive informa-
tion, which may limit insights drawn by researchers from the 
data. Automatic processing could be problematic with machine 
learning and big-data designs, even using anonymous data only. 
When a database uses many types of data from individual sub-
jects, it will increase the likelihood that data can be traced back 
to individuals (reidentification; Leese 2014; Rocher et al. 2019). 
Privacy concerns and the sheer amount of data have led to the 
development of distributed learning, an approach that allows for 
decentralized training (Konečný et  al. 2016). For example, in 
federated learning, models are trained locally on a local device 
(e.g., a smartphone connected to a hearing aid; Szatmari et al. 
2020), and only aggregate meta-data (updated priors) travel 
from central databases to users and back.

Restricted Access and Control Over Data
All human stakeholders must have access to relevant infor-

mation to make the right decision about the diagnosis, treat-
ment, or rehabilitation that affects a patient’s health. Data from 
which relevant information could be extracted is currently scat-
tered across databases residing with different stakeholders (i.e., 
companies, hospitals, research institutions). The data are col-
lected for distinct purposes and might have a particular status, 
for example, proprietary or open. In effect, data are vital for 
so many processes that control over them may lead to a strate-
gic advantage in business, clinical care, or science. Companies 
might collect data to improve products (proprietary data) or 
evaluate services, but also because of legal requirements or for 
quality assurance. It is mandatory for health care professionals 
to keep a medical record that contains all information needed 
to provide accountable care according to good clinical prac-
tices* (article 454 WGBO; Eijpe 2014). The Health Insurance 
Portability and Accountability Act (HIPAA) in the United 
States and GDPR in the EU provide the legislative framework 
that enables patients and care providers access and control over 
personal data (Individuals’ Right under HIPAA to Access their 
Health Information 2016; Forrest 2018). An individual can 
request access to his/her data stored by a health care provider 
(HIPAA) or any organization (GDPR). Therefore, in theory, it is 
possible to create a global system that can access patients’ health 
history. In reality, however, appropriate data-exchange practices 
are lacking, which seriously hampers patients’ control over their 
data. The (re)use of proprietary data can be restricted and is 
subject to trade secrets, patents, copyrights, or licenses (e.g., see 
for legal rights governing research data, Carroll 2015; and for 
property rights, Stepanov 2020). Vested interests, a motivation 
to influence factors for your benefit, is a considerable barrier 

to the reuse of proprietary data. Without access to relevant 
information, patients cannot make informed (shared) decisions. 
Clinicians will lack insight into decision support systems, regu-
lators will be unable to inspect and audit, and researchers will 
be unable to appraise outcomes and methods critically.

Liability
For anyone working with new AI paradigms, it needs to be 

clear who is responsible if anything goes wrong. Is it the scien-
tist who made the algorithm, is it the health care professional, or 
is it the patient who is ultimately responsible for their own deci-
sions? For example, how can a clinician (or a patient) ascertain 
that an algorithm’s outcome is correct and valid? An explicit 
example of a potentially invalid test result is an auditory steady-
state response exam performed on a restless neonate that results 
in measurement conditions markedly different from the condi-
tions on which the algorithm was trained (Sininger et al. 2018). 
The test result may not be accurate, but this shortcoming might 
not be noticeable to the clinician.

Oversight and regulation (in general for medicine; Maddox 
et  al. 2019) for hearing-related AI also needs to be in place. 
The level of this oversight will need to be increased in cases 
of highly autonomous and self-learning clinical decision sup-
port systems operating in highly complex environments that 
have severe consequences for erroneous actions. Furthermore, 
AI-based clinical decision support systems need to be transpar-
ent to inspection and audit, and robust for application in a speci-
fied context (in general for health technology; Shuren & Califf 
2016).

THE ROLE OF COMPUTATIONAL AUDIOLOGY IN 
PERSONALIZED HEARING HEALTH CARE

AI, automation, and remote care will become more wide-
spread and better available in the coming years. Redesigning 
the clinical workflow, implementing AI technology, and chang-
ing the clinician’s role should become a top priority (Rajkomar 
et al. 2019). Below we discuss what role clinicians and other 
stakeholders might play in the digital transition and its meaning 
for patients. Already, remote care has become more mainstream 
due to the COVID-19 pandemic that has provided an unprec-
edented impetus to develop and employ hearing health solutions 
that reduce physical contact (De Sousa et al. 2020; Swanepoel 
& Hall 2020). This situation has demonstrated that clinicians 
can adapt if appropriate benefits are clear (e.g., keeping practice 
doors open).

Clinicians’ Role
Hearing health care professionals, including audiolo-

gists, have valuable insights needed to implement these new 
approaches successfully. For instance, algorithmic bias is 
reduced if a system is trained in a situation comparable to 
where it is employed. Therefore, early involvement by hear-
ing care professionals in the design of algorithms could lead 
to products that better fit the clinical pathway. In a concept 
mapping study (a structured method to produce a conceptual 
representation), clinicians from Canada reported that structural 
training on implementation and best-practices of remote care 
is needed (Davies-Venn & Glista 2019). Also, the application 
of AI requires clinicians to have appropriate training to use AI 
tools and to be aware of their validity and limitations as well 

*For the following examples, we chose to apply Dutch law to illustrate a 
legal framework.



Copyright © 2021 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

6  WASMANN ET AL. / EAR & HEARING, VOL XX, NO X, XXX–XXX / EAR & HEARING, VOL. XX, NO. XX, 00–00

as how to use them. Clinicians should also use their position 
(e.g., in a professional society) to advocate for necessary user 
requirements, including transparency and clarity, so that, as pro-
fessionals, they can take responsibility for actions and decisions 
supported by those systems.

Not everything valuable in hearing health care is quantifiable 
and automatable. Machines do not easily replace a clinician in 
aspects of care based on clinical judgment, soft skills, and the 
personal touch that help the clinician understand the patient’s 
needs. Clinicians need to see the patient’s perspective while 
offering knowledge, creating realistic expectations, providing 
rehabilitation, and collecting feedback. They are also the media-
tors that counsel patients in using remote care options, translat-
ing outcomes to individual cases, and interpreting results from 
AI approaches.

Automation of routine diagnostic procedures might free up 
clinician time to design more elaborate therapeutic interven-
tions, rehabilitation strategies, or even patient engagement/edu-
cation initiatives. Technical tasks, including hearing tests and 
hearing aid fitting, will benefit from best practices for accuracy 
and efficiency standardized in automated routines. One example 
could be visual reinforcement audiometry for infants, which 
currently requires two clinicians to implement: one that con-
ditions the child while the other selects each stimulus and the 
timing of its delivery. Suppose the stimulus selection is opti-
mized through active learning. In that case, a single clinician 
could condition the child while also registering responses and 
selecting the timing of delivery with a handheld remote. The 
result would be more accurate test results with half the labor, 
potentially enabling a practice to double its patient throughput. 
In considering such scenarios, clinician concerns about becom-
ing marginalized in the face of automation deserve consider-
ation. AI technology can eventually standardize best practices 
of efficiency and effectiveness for all clinicians while preserving 
the necessary human element of care that only a person can 
provide. In no way are these ideas intended to take clinicians 
out of the loop or diminish their contribution. On the contrary, 
their new ability to reach more patients and provide better care 
is expected to expand their clinical impact.

Collaboration Among Stakeholders
This article attempts to start the dialogue needed to create 

a shared vision among stakeholders regarding computational 
audiology, one of the first steps towards effective collaboration. 
As examples, one could think of health care decision-making 
and advocacy groups including health departments; nongovern-
mental organizations including WHO and patient associations; 
but also hearing health care professionals including medi-
cal doctors and audiologists; device manufacturers, insurance 
companies, and researchers in audiology. The way to get there 
could be by stakeholder collaboration, for which Sekhri et al. 
(2011) provide successful examples within medicine. We regard 
such collaboration as a necessary step to implement the current 
advances in computational audiology on a large scale. Besides a 
shared vision, we also need to think about aligning the interests 
of stakeholders. By putting patients’ interests first and creat-
ing the proper incentives (i.e., rewards that encourage people 
or organizations to do something),  we may overcome profes-
sional inertia, defined here as the resistance to change. For this 
to occur, we need to assess and create awareness about vested 
interests that hamper innovation (e.g., reimbursement policies; 

Davies-Venn & Glista 2019) and find common ground. By col-
laboration, then,  we can jointly overcome the barriers and all 
benefit fairly from the forthcoming advances.

An opportunity to further improve diagnostic and therapeu-
tic procedures is to make anonymous data openly available so 
that algorithms can train on larger populations. All stakehold-
ers involved who collect data should apply privacy guarded-
by-design, which requires built-in safety measures to protect 
patients’ privacy (A&L Goodbody 2016). These measures 
should require all stakeholders to assume responsibility for their 
specified share within the system. A prerequisite for collabora-
tion is the standardization of clinical procedures and how data 
is stored and annotated within a computational infrastructure. 
Only then is pooling of high-quality data possible. The time of 
small-scale research with small (uniform) samples should be 
consigned to the past. Here, we may learn from other fields. For 
example, in neuroimaging and genetics, research groups started 
a consortium to facilitate data aggregation and sharing on a 
scale unprecedented in audiology (Bis et al. 2012).

Standardization would help clinicians collect evidence and 
create independent outcome measures to assess new tools and 
comparing them with established and validated methods. It also 
ensures that clinicians are talking about the same thing when 
operating within a network of distributed expertise. Besides, by 
enabling interoperability between manufacturers and clinics, 
clinical procedures can be more readily adopted. Interoperable 
systems in combination with licenses to protect proprietary 
data will reduce risk and costs for companies (e.g., missing out 
on a standard, maintaining a platform, adhering to regulatory 
requirements). These systems keep the option open to compete 
and excel, and tackle the problem of vendor lock-in that cur-
rently limits freedom of choice for clinics and patients.

What Does Computational Audiology Mean to Patients?
For many people worldwide, access to screening and diag-

nosis of hearing impairment will improve. The complexity of a 
patient’s hearing problem and his/her self-reliance will deter-
mine the required degree of professional guidance. A large 
group with mild and moderate hearing loss may be helped with 
relatively simple devices and may even apply forms of self-care. 
More intensified professional help is needed for more complex 
fittings or for people who cannot apply self-care (e.g., those 
with specific comorbidities).

We believe it is still a significant challenge to make self-care 
by people with hearing loss possible even for those with suffi-
cient autonomy and health literacy, for reasons including lack of 
trust in the transition and how digital information is presented 
and exchanged between patients, clinicians, and companies. If 
information is not clear to the patient, how can he/she act upon 
it? Clinicians will play an essential role in maintaining patient 
trust in the transition and adapting to new practices. Hearing 
health care may evolve to the point where parts of care are orga-
nized remotely, for instance, screening of hearing loss, moni-
toring the status quo, and making adjustments to rehabilitation 
depending on the patient’s situation.

THE FUTURE OF AUDIOLOGY

Modernization of audiology towards greater quality, acces-
sibility, and equity will benefit immensely from the emerging 
power of computational sciences. We envision a future where 
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patient well-being is promoted by judicious evaluation of data 
shared between interoperable systems of public or private ori-
gin. Health care providers will adopt expanded roles within a 
network of distributed expertise that continually updates best 
practices as they are accumulated and quantified. Clinicians 
will be empowered to reach more patients by offloading deci-
sions about data collection to supportive tools while reserving 
complex and rare clinical decisions for human experts. In the 
next decade, we foresee that widely available devices, including 
smartphones, will catalyze the democratization of audiology 
and benefit millions of people who suffer from the disabling 
effects of hearing loss by helping evaluate and treat them with 
support and guidance from advanced algorithms. For this to 
happen, we must join forces with experts in computational 
sciences, agree on global standards and evidence-based proce-
dures, and carefully consider the possible challenges of big data 
and AI technology.
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